EXPRESIONES RACIONALES..
Las expresiones racionales son fracciones que tienen un polinomio en el numerador o en el denominador o en ambos. Aunque las expresiones racionales pueden parecer complicadas porque contienen variables, pueden ser simplificadas de la misma forma que las fracciones numéricas.
DIAGRAMA DEL ÁRBOL..
Un diagrama de árbol es una herramienta que se utiliza para determinar todos los posibles resultados de un experimento aleatorio. En el cálculo de muchas probabilidades se requiere conocer el número de objetos que forman parte del espacio muestral, estos se pueden determinar con la construcción de un diagrama de árbol.
El diagrama de árbol es una representación gráfica de los posibles resultados del experimento, el cual consta de una serie de pasos, donde cada uno de estos tiene un número finito de maneras de ser llevado a cabo. Se utiliza en los problemas de conteo y probabilidad.
Para la construcción de un diagrama en árbol se partirá poniendo una rama para cada una de las posibilidades, acompañada de su probabilidad. Cada una de estas ramas se conoce como rama de primera generación.
En el final de cada rama de primera generación se constituye a su vez, un nudo del cual parten nuevas ramas conocidas como ramas de segunda generación, según las posibilidades del siguiente paso, salvo si el nudo representa un posible final del experimentó (nudo final).
Hay que tener en cuenta que la construcción de un árbol no depende de tener el mismo número de ramas de segunda generación que salen de cada rama de primera generación y que la suma de probabilidades de las ramas de cada nudo ha de DVD xh
Existe un principio sencillo de los diagramas de árbol que hace que éstos sean mucho más útiles para los cálculos rápidos de probabilidad: multiplicamos las probabilidades si se trata de ramas adyacentes (contiguas), el ejemplo de alumna de la primera facultad, o bien las sumamos si se trata de ramas separadas que emergen de un mismo punto, el ejemplo de encontrar un alumno.
PROBABILIDAD FACTORIAL..
El factorial de un entero positivo n, el factorial de n o n factorial se define en principio como el producto de todos los números enteros positivos desde 1 (es decir, los números naturales) hasta n. Por ejemplo,
La operación de factorial aparece en muchas áreas de las matemáticas, particularmente en combinatoria y análisis matemático. De manera fundamental el factorial de n representa el número de formas distintas de ordenar n objetos distintos (elementos sin repetición). Este hecho ha sido conocido desde hace varios siglos, en el siglo XII por los estudiosos hindúes.
La definición de la función factorial también se puede extender a números no naturales manteniendo sus propiedades fundamentales, pero se requieren matemáticas avanzadas, particularmente del análisis matemático.
La notación matemática actual n! fue usada por primera vez en 18081 por Christian Kramp (1760–1826), un matemático francés que trabajó en especial sobre los factoriales toda su vida.
No hay comentarios:
Publicar un comentario